## Suggested Solution to Exercise 2

1. Find the hyperplanes specified by the directions $\boldsymbol{\xi}$ and points $p$ as shown
(a) $\boldsymbol{\xi}=(1,0,2) ; \quad \mathbf{p}=(0,1,-4)$,
(b) $\boldsymbol{\xi}=(11,3,4,0) ; \quad \mathbf{p}=(1,-1,-2,-5)$;
(c) $\boldsymbol{\xi}=(2,-1) ; \quad \mathbf{p}=(3,3)$.

## Solution.

(a) The hyperplane is given by the following equation

$$
(1,0,2) \cdot((x, y, z)-(0,1,-4))=0,
$$

that is, $x+2 z+8=0$.
(b) The hyperplane is given by the following equation

$$
(11,3,4,0) \cdot((x, y, z, w)-(1,-1,-2,-5))=0,
$$

that is, $11 x+3 y+4 z=0$.
(c) The hyperplane is given by the following equation

$$
(2,-1) \cdot((x, y)-(3,3))=0,
$$

that is, $2 x-y-3=0$.
2. Find the plane passing through $(0,-1,1)$ and parallel to the plane $x+y+4 z=8$.

Solution. Since the plane is parallel to the given plane, its normal direction is equal to that of the given plane, i.e. $(1,1,4)$. Therefore, the plane is given by the following equation:

$$
(1,1,4) \cdot((x, y, z)-(0,-1,-1))=0,
$$

which is simplified to $x+y+4 z-3=0$.
3. Find all planes passing through $(2,-3,0)$ and intersecting the plane $x-4 y+2 z=-1$ vertically.
Solution. Let $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ be a normal direction of any of such planes (and hence $\boldsymbol{\xi} \neq \mathbf{0})$. Then intersecting the plane vertically means $\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \cdot(1,-4,2)=0$ which yields

$$
\xi_{1}=4 \xi_{2}-2 \xi_{3}
$$

Therefore, these planes are described by the following equation

$$
\left(4 \xi_{2}-2 \xi_{3}, \xi_{2}, \xi_{3}\right) \cdot((x, y, z)-(2,-3,0))=0
$$

i.e.

$$
\left(4 \xi_{2}-2 \xi_{3}\right)(x-2)+\xi_{2}(y+3)+\xi_{3} z=0, \quad\left(\xi_{2}, \xi_{3}\right) \neq(0,0) .
$$

Note. Restricting to unit vectors, we can write $\left(\xi_{2}, \xi_{3}\right)=(\cos \theta, \sin \theta)$ so these planes are described by a one parameter family

$$
(4-2 \tan \theta)(x-2)+(y+3)+\tan \theta z=0 .
$$

4. Find the hyperplanes passing through the following points:
(a) $(1,9),(2,-12)$,
(b) $(1,0,-1),(2,0,3),(1,1,0)$.
(c) $(1,1,1),(1,-1,1),(-1,1,1)$.
(d) $(1,1,0,-4),(0,0,0,3),(0,-1,0,-1),(4,2,0,0)$.

Solution.
(a) Let $\xi=\left(\xi_{1}, \xi_{2}\right)$ be a normal direction of such plane. The only requirement is

$$
\left(\xi_{1}, \xi_{2}\right) \cdot((2,-12)-(1,9))=0
$$

that is, $\xi_{1}=-21 \xi_{2}$. Therefore, we can choose the normal direction to be $(-21,1)$, and the plane is given by the equation

$$
(-21,1) \cdot((x, y)-(1,9))=0
$$

that is, $-21 x+y+12=0$.
(b) Let $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ be a normal direction of such plane. Then

$$
\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \cdot((2,0,3)-(1,0,-1))=0, \quad\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \cdot((1,1,0)-(1,0,-1))=0
$$

that is $\xi_{1}+4 \xi_{3}$ and $\xi_{2}+\xi_{3}=0$, so $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=(-4,-1,1) \xi_{3}$. Therefore, a normal direction is given by $(-4,-1,1)$, and the plane is $(-4,-1,1) \cdot((x, y, z)-(1,0,-1))=0$, or, $-4 x-y+z+6=0$.
(c) Let $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ be a normal direction of such plane. Then

$$
\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \cdot((1,-1,1)-(1,1,1))=0, \quad\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \cdot((-1,1,1)-(1,1,1))=0
$$

It implies $-2 \xi_{2}=0$ and $-2 \xi_{1}=0$. Thus $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=(0,0,1) \xi_{3}$. A normal direction is given by $(0,0,1)$, and the plane is $(0,0,1) \cdot((x, y, z)-(1,1,1))=0$, or $z-1=0$.
(d) Let $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)$ be a normal direction of such plane. Then

$$
\begin{aligned}
& \left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \cdot((1,1,0,-4)-(0,0,0,3))=0 \\
& \left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \cdot((0,-1,0,-1)-(0,0,0,3))=0
\end{aligned}
$$

and

$$
\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \cdot((4,2,0,0)-(0,0,0,3))=0
$$

give $\xi_{1}+\xi_{2}-7 \xi_{4}=0,-\xi_{2}-4 \xi_{4}=0,4 \xi_{1}+2 \xi_{2}-3 \xi_{4}=0$. It follows that $\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=$ $(0,0,1,0) \xi_{3}$. Therefore, a normal direction is given by $(0,0,1,0)$, and the plane is $(0,0,1,0) \cdot((x, y, z, w)-(0,0,0,3))=0$, or, $z=0$
5. Show that the plane passing through $\mathbf{a}, \mathbf{b}$ and the origin is given by the determinant equation

$$
\left|\begin{array}{ccc}
x & y & z \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=0 .
$$

What happens if $\mathbf{a}$ and $\mathbf{b}$ are collinear?

## Solution.

Expanding

$$
\left|\begin{array}{ccc}
x & y & z \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=0
$$

gives the form $A x+B y+C z=0$.
When $(A, B, C) \neq(0,0,0)$, then this defines a plane passing through origin.

Moreover, since

$$
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=0
$$

the plane also passes through a.
Similarly,

$$
\left|\begin{array}{ccc}
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=0
$$

implies that the plane also passes through $b$. Therefore, this determinant equation defines a plane passes through $\mathbf{a}, \mathbf{b}$ and origin.

If $\mathbf{a}, \mathbf{b}$ are collinear, $\mathbf{a} \times \mathbf{b}=\mathbf{0}$, and hence $(A, B, C)=(0,0,0)$.
6. Find the distance from $\mathbf{P}$ to the hyperplane $H$ and the point $\mathbf{Q}$ on $H$ realizing the distance:
(a) $(1,2), \quad x+6 y=0$.
(b) $(1,2,4), \quad x-2 y=-1$,
(c) $(2,4,6,8), \quad x-3 y-4 z+w=-6$.

Solution.
(a) Let $\mathbf{Q}=\left(q_{1}, q_{2}\right)$. Since $\mathbf{Q}$ realizes the distance, $\left((1,2)-\left(q_{1}, q_{2}\right)\right) \perp\{x+6 y=0\}$ implies $\left(1-q_{1}, 2-q_{2}\right)=\lambda(1,6)$ for some $\lambda$. Hence $1-q_{1}=\lambda$ and $2-q_{2}=6 \lambda$. Also, since $\mathbf{Q}$ lies on $H, q_{1}+6 q_{2}=0$. Solving these three equations, we get $q_{1}=-4 / 37$ and $q_{2}=6 q_{1}-4=-292 / 37$.
So $\mathbf{Q}=(-4 / 37,-292 / 37)$, and

$$
d=|(1,2)-q|=\sqrt{\left(\frac{41}{37}\right)^{2}+\left(\frac{366}{37}\right)^{2}}=\frac{\sqrt{135637}}{37}
$$

(b) Let $\mathbf{Q}=\left(q_{1}, q_{2}, q_{3}\right)$. We have

$$
\left(1-q_{1}, 2-q_{2}, 4-q_{3}\right)=\lambda(1,-2,0)
$$

for some $\lambda$. Thus $1-q_{1}=\lambda, 2-q_{2}=-2 \lambda, 4-q_{3}=0$. Also, since $\mathbf{Q}$ lies on $H, q_{1}-2 q_{2}=-1$. Solving to get

$$
\mathbf{Q}=\left(-\frac{7}{5}, \frac{34}{5}, 4\right)
$$

So

$$
d=|(1,2,4)-q|=\sqrt{\left(\frac{12}{5}\right)^{2}+\left(-\frac{24}{5}\right)^{2}+0^{2}}=\frac{12 \sqrt{5}}{5}
$$

(c) Let $\mathbf{Q}=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$. We have

$$
\left(2-q_{1}, 4-q_{2}, 6-q_{3}, 8-q_{4}\right)=\lambda(1,-3,-4,1)
$$

for some $\lambda$. Also, since $\mathbf{Q}$ lies on $H, q_{1}-3 q_{2}-4 q_{3}+q_{4}=-1$. Solving this linear system of five equations for five variables to get

$$
q_{1}=\frac{79}{27}, q_{2}=\frac{11}{9}, q_{3}=\frac{62}{27}, q_{4}=\frac{241}{27}
$$

So $\mathbf{Q}=\left(\frac{79}{27}, \frac{11}{9}, \frac{62}{27}, \frac{241}{27}\right)$, and

$$
d=|(2,4,6,8)-q|=\sqrt{\left(-\frac{25}{27}\right)^{2}+\left(\frac{25}{9}\right)^{2}+\left(\frac{100}{27}\right)^{2}+\left(-\frac{25}{27}\right)^{2}}=\frac{25 \sqrt{3}}{9}
$$

7. Find two parametric forms of the straight lines described by the following system using $x$ and $z$ as the parameters respectively:

$$
\left\{\begin{array}{l}
2 x-6 y=0 \\
3 x+5 y-6 z=-1
\end{array}\right.
$$

Solution. (i) Using $x$ as the parameter. Then $2 x-6 y=0$ implies $y=\frac{x}{3}$, and $3 x+5 y-6 z=$ -1 becomes $3 x+\frac{5 x}{3}-6 z=-1$. Hence $z=\frac{14 x+3}{18}$.
The parametric form of the straight line is given by

$$
(x, y, z)=\left(x, \frac{x}{3}, \frac{14 x+3}{18}\right)=\left(1, \frac{1}{3}, \frac{7}{9}\right) x+\left(0,0, \frac{1}{6}\right)
$$

where $x \in \mathbb{R}$ is the parameter.
(ii) Using $z$ as the parameter. Then write $3 x+5 y-6 z=-13 x+5 y=-1+6 z$. We have the following system of linear equations in $x, y$ : $x-3 y=0,3 x+5 y=-1+6 z$, which gives $-14 y=1-6 z$. Thus $y=\frac{6 z-1}{14}$. Therefore, $x=3 y=\frac{18 z-3}{14}$. The parametric form of the straight line is given by

$$
(x, y, z)=\left(\frac{18 z-3}{14}, \frac{6 z-1}{14}, z\right)=\left(\frac{9}{7}, \frac{3}{7}, 1\right) z+\left(-\frac{3}{14},-\frac{1}{14}, 0\right)
$$

where $z \in \mathbb{R}$ is the parameter.
8. Find the point of intersection (if any) of the lines and planes:
(a) $(0,2)+t(1,1), \quad x+3 y=1$.
(b) $(7,3,0)+t(-4,6,5), \quad 4 x+y+2 z=17$.
(c) $(15,10,5)+t(7,12,-4), \quad x+y+z=45$.

Solution. (a) Plug $x=t, y=2+t$ into the equation to get $t+6+3 t=1$ which yields $t=-5 / 4$. So the intersection point is $(0,2)+\frac{-5}{4}(1,1)=(-5 / 4,3 / 4)$.
(b) Using $x=7-4 t, y=3+6 t, z=5 t$ to get $31=17$ from the equation. There is no solution. We conclude that the line does not intersect the plane.
(c) Solve to get $t=1$ so the point of intersection is $(22,22,1)$.
9. The angle between two planes is defined to be the angle between their normal directions (lying in $[0, \pi)$ ). Find these angles in the following cases:
(a) $2 x-y+z=13$ and $x+y-z=1$.
(b) $x+11 y-5 z=0$ and the $x y$-plane.

## Solution.

(a) The normals on the corresponding planes are given by $(2,-1,1)$ and $(1,1,-1)$ respectively.
Therefore,

$$
\cos \theta=\frac{(2,-1,1) \cdot(1,1,-1)}{|(2,-1,1)||(1,1,-1)|}=0
$$

Hence, the angle is $\pi / 2$, that is, these two planes are perpendicular.
(b) The normals on the corresponding planes are given by $(1,11,-5)$ and $(0,0,1)$ respectively.
Therefore,

$$
\cos \theta=\frac{(1,11,-5) \cdot(0,0,1)}{|(1,11,-5)||(0,0,1)|}=-\frac{5}{\sqrt{147}}
$$

Hence, the angle is $\cos ^{-1}\left(-\frac{5}{\sqrt{147}}\right) \in(\pi / 2, \pi)$.
10. Find the straight lines passing through $(1,-2,3)$ and hitting the plane $x-y+6 z=-1$ at right angle. Find the point of intersection too.

Solution. A normal direction of the given plane is $(1,-1,6)$. Therefore, the required straight line is parallel to the normal direction, i.e. $(1,-1,6)$, and passes through $(1,-2,3)$. It takes the parametric form

$$
(x, y, z)-(1,-2,3)=t(1,-1,6), \quad t \in \mathbb{R}
$$

Since the line hits the plane, let $\left(x_{0}, y_{0}, z_{0}\right)=(1,-2,3)+t_{0}(1,-1,6)$ be the intersection point. Then

$$
\left(1+t_{0}\right)-\left(-2-t_{0}\right)+6\left(3+6 t_{0}\right)=-1
$$

which implies $38 t_{0}=-22$, and hence $t_{0}=-\frac{11}{19}$.
Therefore, the intersection point is

$$
(1,-2,3)-\frac{11}{19}(1,-1,6)=\frac{1}{19}(8,-27,-9)
$$

11. Find the distance between the two straight lines in the following cases:
(a) $(1,2,3)+t(0,1,0)$ and $s(1,0,-2)$.
(b) $(1,0,1,0)+t(-1,0,0,0)$ and $(-1,-1,0,1)+s(0,2,-1,0)$.

Hint: The distance is realized by the line segment that is perpendicular to both lines.
Solution. (a) Let $(1,2+t, 3)$ and $(s, 0,-2 s)$ be respectively the points on the first and the second line realizing the distance. It is characterized by

$$
(1-s, 2+t, 3+2 s) \cdot(0,1,0)=0, \quad(1-s, 2+t, 3+2 s) \cdot(1,0,-2)=0
$$

Solving it we get $t=-2$ and $s=-1$. So the points are given by $(1,0,3)$ and $(-1,0,2)$ and the distance is $\sqrt{5}$.
(b) The points are $(1-t, 0,1,0)$ and $(-1,2 s-1,-s, 1)$ respectively. The perpendicular conditions are
$(2-t,-2 s+1,1+s,-1) \cdot(-1,0,0,0)=0, \quad(2-t,-2 s+1,1+s,-1) \cdot(0,2,-1,0)=0$.
Solve to get $t=2$ and $s=3 / 5$ and the points are $(-1,0,1,0)$ and $(-1,1 / 5,-3 / 5,1)$. The distance is $3 \sqrt{10} / 5$.
12. Propose a definition of the projection of $P(x, y, z)$ on a straight line passing through the origin and then find a formula for it.
Solution. The projection of $P\left(x_{0}, y_{0}, z_{0}\right)$ on a straight line $L$ described by $t(a, b, c), t \in \mathbb{R}$, is the point $Q(x, y, z)$ satisfying (i) $Q$ lies on $L$ and (ii) $P-Q=\left(x_{0}-x, y_{0}-y, z_{0}-z\right)$ is perpendicular to $(a, b, c)$.

By (i), $Q=t_{0}(a, b, c)$ for some $t_{0} \in \mathbb{R}$. By (ii), $\left(x_{0}-t_{0} a, y_{0}-t_{0} b, z_{0}-t_{0} c\right) \cdot(a, b, c)=0$, which implies $\left(x_{0}, y_{0}, z_{0}\right) \cdot(a, b, c)=t_{0}|(a, b, c)|^{2}$, and hence $t_{0}=\frac{\left(x_{0}, y_{0}, z_{0}\right) \cdot(a, b, c)}{|(a, b, c)|^{2}}$. The projection $Q$ is given by

$$
Q=\frac{\left(x_{0}, y_{0}, z_{0}\right) \cdot(a, b, c)}{|(a, b, c)|^{2}}(a, b, c)
$$

13. Find the three medians of the triangle $A(0,0), B(2,6), C(4,-4)$ and verify that they meet at a point.

## Solution.

We first find the midpoints of $\overline{A B}, \overline{B C}$ and $\overline{C A}$ respectively. Midpoint of $\overline{B C}=\frac{1}{2}((2,6)+$ $(4,-4))=(3,1)$, midpoint of $\overline{C A}=\frac{1}{2}((4,-4)+(0,0))=(2,-2)$, and midpoint of $\overline{A B}=$ $\frac{1}{2}((0,0)+(2,6))=(1,3)$. We then find the equations of three medians: The median $l_{1}$ from $A$ to $\overline{B C}$ is given by $t(3,1), t \in[0,1]$, the median $l_{2}$ from $B$ to $\overline{C A}$ is given by $(2,6)+s((2,-2)-(2,6))=(2,6)+s(0,-8), s \in[0,1]$ and the median $l_{3}$ from $C$ to $\overline{A B}$ is given by $(4,-4)+z((1,3)-(4,-4))=(4,-4)+z(-3,7), z \in[0,1]$.

Suppose $l_{1}$ and $l_{2}$ meet at $P=(x, y)$. Write $(x, y)=t_{0}(3,1)$ for some $t_{0} \in[0,1]$ as $P \in l_{1}$, then since $P \in l_{2}$ also, there exists $s_{0} \in[0,1]$ such that $t_{0}(3,1)=(2,6)+s_{0}(0,-8)$, i.e.

$$
\left\{\begin{array}{l}
3 t_{0}=2 \\
t_{0}=6-8 s_{0}
\end{array}\right.
$$

which is solved to get $t_{0}=\frac{2}{3}$ and $s_{0}=\frac{2}{3}$. Therefore, $P=\frac{2}{3}(3,1)=\left(2, \frac{2}{3}\right)$.

To show $l_{3}, l_{2}, l_{1}$ meet at a point, it suffices to show that $P \in l_{3}$ : in other words, whether there exists $z_{0} \in[0,1]$ such that $\left(2, \frac{2}{3}\right)=(4,-4)+z_{0}(-3,7)$, i.e.

$$
\left\{\begin{array}{l}
2=4-3 z_{0} \\
\frac{2}{3}=-4+7 z_{0}
\end{array}\right.
$$

Both equations have solution $z_{0}=\frac{2}{3}$. Therefore, $P \in l_{3}$, and hence $l_{3}, l_{2}, l_{1}$ meet at a point.
14. Let $A(1,0), B(2,3), C(4,4)$ be a triangle. Determine its altitude from $A$ to $B C$ and from $B$ to $A C$.

## Solution.

The altitude from $A$ to $\overline{B C}$ is perpendicular to $(4,4)-(2,3)=(2,1)$. We may take its direction to be $(-1,2)$. The line passing through $A$ with direction $(2,1)$ has the parametric form $(1,0)+t(-1,2), t \in \mathbb{R}$. Meanwhile, the line passes through $B, C$ is given by $(2,3)+$ $s((4,4)-(2,3))=(2,3)+s(2,1), s \in \mathbb{R}$. Suppose these two lines meet at $D=(x, y)$. There exist $t_{0}, s_{0} \in \mathbb{R}$ such that $(x, y)=(1,0)+t_{0}(-1,2)=(2,3)+s_{0}(2,1)$, i.e.

$$
\left\{\begin{array}{l}
1-t_{0}=2+2 s_{0} \\
2 t_{0}=3+s_{0}
\end{array}\right.
$$

which has the solution $t_{0}=1$ and $s_{0}=-1$. Therefore, $P=(1,0)+(-1,2)=(0,2)$, and hence the altitude $\overline{A D}$ is given by $(1,0)+t(-1,2), t \in[0,1]$
The altitude from $B$ to $\overline{A C}$ is perpendicular to $(4,4)-(1,0)=(3,4)$. We may take its direction to be $(-4,3)$. The line passing through $B$ with direction $(-4,3)$ has the parametric form $(2,3)+t(-4,3), t \in \mathbb{R}$. Meanwhile, the line passes through $A, C$ is given by $(1,0)+s((4,4)-(1,0))=(1,0)+s(3,4), s \in \mathbb{R}$. Suppose these two lines meet at $E=(x, y)$. Then there exist $t_{0}, s_{0} \in \mathbb{R}$ such that $(x, y)=(2,3)+t_{0}(-4,3)=(1,0)+s_{0}(3,4)$, i.e.

$$
\left\{\begin{array}{l}
2-4 t_{0}=1+3 s_{0} \\
3+3 t_{0}=4 s_{0}
\end{array}\right.
$$

which has the solution $t_{0}=-\frac{1}{5}$ and $s_{0}=\frac{3}{5}$. Therefore, $E=(2,3)-\frac{1}{5}(-4,3)=\left(\frac{14}{5}, \frac{12}{5}\right)$, and hence the altitude $\overline{B E}$ is given by $(2,3)+t\left(\frac{4}{5},-\frac{3}{5}\right), t \in[0,1]$.
15. * Let $A(3,4), B(0,0), C(2,0)$ be a triangle. Determine its angle bisector from $A$ and from $C$.

## Solution.

Let $\xi=\left(\xi_{1}, \xi_{2}\right)$ be a direction of the angle bisector at $A$. Since it bisects $\angle B A C$,

$$
\frac{(3,4) \cdot \xi}{5|\xi|}=\frac{((3,4)-(2,0)) \cdot \xi}{\sqrt{17}|\xi|}=\frac{(1,4) \cdot \xi}{\sqrt{17}|\xi|}
$$

which implies

$$
\sqrt{17}\left(3 \xi_{1}+4 \xi_{2}\right)=5\left(\xi_{1}+4 \xi_{2}\right)
$$

Set $\xi=(16,13-\sqrt{17})$. The line passing through $A$ and parallel to the angle bisector of $\angle B A C$ has the form $(3,4)+t(16,13-\sqrt{17}), t \in \mathbb{R}$. Meanwhile, the line passes through $B, C$
is given by $(0,0)+s((2,0)-(0,0))=s(2,0), s \in \mathbb{R}$. Let $E(x, y)$ be the intersection point of these two lines. There exist $t_{0}, s_{0} \in \mathbb{R}$ such that $(x, y)=(3,4)+t_{0}(16,13-\sqrt{17})=s_{0}(2,0)$, i.e.

$$
\left\{\begin{array}{l}
3+16 t_{0}=2 s_{0} \\
4+(13-\sqrt{17}) t_{0}=0
\end{array}\right.
$$

which has the solution $t_{0}=-\frac{4}{13-\sqrt{17}}=-\frac{(13+\sqrt{17})}{38}$ and $s_{0}=-\frac{47+8 \sqrt{17}}{38}$. Therefore, $E=(x, y)=(3,4)-\frac{(13+\sqrt{17})}{38}(16,13-\sqrt{17})$, and hence the angle bisector $\overline{A E}$ is given by $(3,4)+t\left(-\frac{64}{13-\sqrt{17}},-1\right), t \in[0,1]$.
Let $\phi=\left(\phi_{1}, \phi_{2}\right)$ be a direction of the angle bisector at $C$. Since it bisects $\angle B C A$,

$$
\frac{(2,0) \cdot \phi}{2|\phi|}=\frac{((3,4)-(2,0)) \cdot \phi}{\sqrt{17}|\phi|}=\frac{(1,4) \cdot \phi}{\sqrt{17}|\phi|}
$$

which implies $\sqrt{17}\left(\phi_{1}\right)=\left(\phi_{1}+4 \phi_{2}\right)$.
Set $\phi=(4, \sqrt{17}-1)$. The line passing through $A$ and parallel to the angle bisector of $\angle B A C$ has the form $(2,0)+t(4, \sqrt{17}-1), t \in \mathbb{R}$. Meanwhile, the line passes through $A, B$ is given by $(0,0)+s((3,4)-(0,0))=s(3,4), s \in \mathbb{R}$

Let $F(x, y)$ be the intersection point of these two lines. Then there exist $t_{0}, s_{0} \in \mathbb{R}$ such that $(x, y)=(2,0)+t_{0}(4, \sqrt{17}-1)=s_{0}(3,4)$, i.e.

$$
\left\{\begin{array}{l}
2+4 t_{0}=3 s_{0} \\
(\sqrt{17}-1) t_{0}=4 s_{0}
\end{array}\right.
$$

which has the solution $t_{0}=-\frac{8}{3 \sqrt{17}-19}$ and $s_{0}=-\frac{2(\sqrt{17}-1)}{3 \sqrt{17}-19}$. Therefore, $F=(x, y)=$ $(2,0)-\frac{8}{3 \sqrt{17}-19}(4, \sqrt{17}-1)$, and hence the angle bisector $\overline{C F}$ is given by

$$
(2,0)-t\left(-\frac{32}{3 \sqrt{17}-19},-\frac{8(\sqrt{17}-1)}{3 \sqrt{17}-19}\right), t \in[0,1]
$$

16. Find the "standard forms" of the following quadratic equations and describe their solution sets.
(a) $x^{2}-2 x y+2 y=0$,
(b) $x^{2}+2 x y+y^{2}+2 y=-6$,
(c) ${ }^{*} 5 x^{2}+4 y^{2}-2 x y+a x=-1, \quad a \in \mathbb{R}$.

Solution.
(a) The matrix of this quadratic form is

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right]
$$

whose determinant is equal to -1 . This curve is a hyperbola.
To find its standard form, we note that its characteristic equation is $(1-\lambda)(-\lambda)-1=$
0 . Solve it to get two eigenvalues $\lambda_{1}=\frac{1-\sqrt{5}}{2}, \lambda_{2}=\frac{1+\sqrt{5}}{2}$.
For each of the above eigenvalues, we solve for an associated eigenvector. First, from

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left(\frac{1-\sqrt{5}}{2}\right)\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

we get $\left(u_{1}, u_{2}\right)=\left(\frac{-1+\sqrt{5}}{2}, 1\right)$. Similarly, an eigenvector for $\lambda_{2}$ is found to be
For $\lambda_{2}$, let $\mathbf{v}=\left(v_{1}, v_{2}\right)^{t}$ be an eigenvector, then it satisfies $\left(\frac{-1-\sqrt{5}}{2}, 1\right)$.
Therefore, the following change of variables will remove the mixed term $x y$ :

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\frac{-1+\sqrt{5}}{2} & \frac{-1-\sqrt{5}}{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

Explicit computations by substitution yields

$$
\begin{aligned}
x^{2}-2 x y+2 y & =\left(\frac{-1+\sqrt{5}}{2} x^{\prime}-\frac{1+\sqrt{5}}{2} y^{\prime}\right)^{2}-2\left(\frac{-1+\sqrt{5}}{2} x^{\prime}-\frac{1+\sqrt{5}}{2} y^{\prime}\right)\left(x^{\prime}+y^{\prime}\right)+2\left(x^{\prime}+y^{\prime}\right) \\
& =\frac{3-\sqrt{5}}{2} x^{\prime 2}+\frac{3+\sqrt{5}}{2} y^{\prime 2}-2 x^{\prime} y^{\prime}+2 \frac{-1+\sqrt{5}}{2} x^{\prime 2}+2 \frac{1+\sqrt{5}}{2} y^{\prime 2}+2 x^{\prime} y^{\prime}+2\left(x^{\prime}+y^{\prime}\right) \\
& =\frac{5-3 \sqrt{5}}{2} x^{\prime 2}+\frac{5+3 \sqrt{5}}{2} y^{\prime 2}+2 x^{\prime}+2 y^{\prime} \\
& =-a^{2} x^{\prime 2}+b^{2} y^{\prime 2}+2 x^{\prime}+2 y^{\prime}
\end{aligned}
$$

where $a^{2}=\frac{3 \sqrt{5}-5}{2}>0$ and $b^{2}=\frac{5+3 \sqrt{5}}{2}>0$.
Finally, let $\tilde{x}=a x^{\prime}$ and $\tilde{y}=b y^{\prime}$, we have

$$
\begin{aligned}
x^{2}-2 x y+2 y & =-a^{2} x^{\prime 2}+b^{2} y^{\prime 2}+2 x^{\prime}+2 y^{\prime} \\
& =-\tilde{x}^{2}+\tilde{y}^{2}+\frac{2}{a} \tilde{x}+\frac{2}{b} \tilde{y} \\
& =-\left(\tilde{x}-\frac{1}{a}\right)^{2}+\left(\tilde{y}+\frac{1}{b}\right)^{2}-\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \\
& =-u^{2}+v^{2}+c
\end{aligned}
$$

where $u=\tilde{x}-a^{-1}, v=\tilde{y}+b^{-1}$ and $c=-\left(a^{-2}+b^{-2}\right)$.
(b) The matrix associated to the quadratic form is

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Its determinant vanishes, so the curve is a parabola. To remove the mixed term, we first note that its eigenvalues are given by $\lambda_{1}=0$ and $\lambda_{2}=2$.

For each of the above eigenvalues, we solve for an associated eigenvector:
For $\lambda_{1}$, an eigenvector is given by $(1,-1)$. For $\lambda_{2}$, an eigenvector is given by $(1,1)$. Therefore, by the change of variables

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right],
$$

we have

$$
\begin{aligned}
x^{2}+2 x y+y^{2}+2 y+6= & \left(x^{\prime}+y^{\prime}\right)^{2}+2\left(x^{\prime}+y^{\prime}\right)\left(-x^{\prime}+y^{\prime}\right)+\left(-x^{\prime}+y^{\prime}\right)^{2}+2\left(-x^{\prime}+y^{\prime}\right)+6 \\
= & \left(x^{\prime 2}+y^{\prime 2}+2 x^{\prime} y^{\prime}\right)+\left(-2 x^{\prime 2}+2 y^{\prime 2}\right)+\left(x^{\prime 2}+y^{\prime 2}-2 x^{\prime} y^{\prime}\right) \\
& +2\left(-x^{\prime}+y^{\prime}\right)+6 \\
= & 4 y^{\prime 2}-2 x^{\prime}+2 y^{\prime}+6 .
\end{aligned}
$$

Finally, let $\tilde{x}=-2 x^{\prime}$ and $\tilde{y}=2 y^{\prime}$, we have

$$
\begin{aligned}
x^{2}+2 x y+y^{2}+2 y & =4 y^{\prime 2}-2 x^{\prime}+2 y^{\prime}+6 \\
& =\tilde{y}^{2}+\tilde{x}+\tilde{y}+6 \\
& =\left(\tilde{y}+\frac{1}{2}\right)^{2}+\tilde{x}+\left(6-\frac{1}{4}\right) \\
& =u+v^{2}+c,
\end{aligned}
$$

where $u=\tilde{x}, v=\tilde{y}+1 / 2$ and $c=23 / 4$.
(c) The matrix of the quadratic form is

$$
\left[\begin{array}{cc}
5 & -1 \\
-1 & 4
\end{array}\right]
$$

Its determinant is 19 , so the curve is an ellipse.
The two eigenvalues are $\lambda_{1}=\frac{9-\sqrt{5}}{2}$ and $\lambda_{2}=\frac{9+\sqrt{5}}{2}$. And the first eigenvector is $(\sqrt{5}-1,2)$ and the second $(\sqrt{5}+1,-2))$. By the change of variables:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{5}-1 & \sqrt{5}+1 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

which will cancel the cross term $x y$. Thus

$$
\begin{aligned}
& 5 x^{2}+4 y^{2}-2 x y+a x+1 \\
& =5\left((\sqrt{5}-1) x^{\prime}+(\sqrt{5}+1) y^{\prime}\right)^{2}+\left(2 x^{\prime}-2 y^{\prime}\right)^{2}-2\left((\sqrt{5}-1) x^{\prime}+\right. \\
& \left.(\sqrt{5}+1) y^{\prime}\right)\left(2 x^{\prime}-2 y^{\prime}\right)+a\left((\sqrt{5}-1) x^{\prime}+(\sqrt{5}+1) y^{\prime}\right)+1 \\
& =\left(5((\sqrt{5}-1))^{2} x^{\prime 2}+5(\sqrt{5}+1)^{2} y^{\prime 2}+10(\sqrt{5}-1)(\sqrt{5}+1) x^{\prime} y^{\prime}\right) \\
& +\left(4 x^{\prime 2}+4 y^{\prime 2}-8 x^{\prime} y^{\prime}\right)-\left(4(\sqrt{5}-1) x^{\prime 2}-4((\sqrt{5}+1)) y^{\prime 2}\right. \\
& \left.+2(-2(\sqrt{5}-1)+2(\sqrt{5}+1)) x^{\prime} y^{\prime}\right)+a\left((\sqrt{5}-1) x^{\prime}+(\sqrt{5}+1) y^{\prime}\right)+1 \\
& =\left(5(\sqrt{5}-1)^{2}-4(\sqrt{5}-1)+4\right) x^{\prime 2}+\left(5(\sqrt{5}+1)^{2}+4(\sqrt{5}+1)+4\right) y^{\prime 2} \\
& +a\left((\sqrt{5}-1) x^{\prime}+(\sqrt{5}+1) y^{\prime}\right)+1 \\
& =c^{2} x^{\prime 2}+d^{2} y^{\prime 2}+a\left((\sqrt{5}-1) x^{\prime}+(\sqrt{5}+1) y^{\prime}\right)+1
\end{aligned}
$$

where $c^{2}=5(\sqrt{5}-1)^{2}-4(\sqrt{5}-1)+4>0$ and $d^{2} 5(\sqrt{5}+1)^{2}+4(\sqrt{5}+1)>0$.
Finally, let $\tilde{x}=c x^{\prime}$ and $\tilde{y}=d y^{\prime}$, we have

$$
\begin{aligned}
5 x^{2}+4 y^{2}-2 x y+a x+1 & =c^{2} x^{\prime 2}+d^{2} y^{\prime 2}+a\left((\sqrt{5}-1) x^{\prime}+(\sqrt{5}+1) y^{\prime}\right)+1 \\
& =\tilde{x}^{2}+\tilde{y}^{2}+\frac{a(\sqrt{5}-1)}{c} \tilde{x}+\frac{a(\sqrt{5}+1)}{d} y^{\prime}+1 \\
& =u^{2}+v^{2}+b
\end{aligned}
$$

where $u=\tilde{x}+\frac{a(\sqrt{5}-1)}{2 c}, v=\tilde{y}+\frac{a(\sqrt{5}+1)}{2 d}$ and

$$
b=1-\left(\frac{a(\sqrt{5}-1)}{2 c}\right)^{2}-\left(\frac{a(\sqrt{5}+1)}{2 d}\right)^{2} .
$$

